Brief update on the ESS RF Systems

Morten Jensen

Linac Design Choices

- User facilities demand high availability (>95\%)
- The linac will be mostly (>97\%) superconducting
- Front end frequency is 352 MHz (CERN Standard)
- High energy section is at 704 MHz
- ESS will limit the peak beam current below 62.5 mA (was 50 mA)
- Linac Energy of 2 GeV - 125 MW peak power.

Optimus+

The ESS Superconducting Power Profile > 150 cavities/couplers

Total High Power RF: 133 MW peak (4\% duty) plus overhead

RF distribution for the RFQ and 5 DTLs Layout being finalised

One 2.8 MW for RFQ

Five 2.8 MW klystrons for DLT

Power split to two couplers per DTL tank

$$
\begin{array}{ll}
\text { CPI } & - \text { VKP-8352B } \\
\text { Thales } & - \text { TH2179 }
\end{array}
$$

2 Klystrons per modulator

Possible RFQ and DTL Power Source

Elliptical (704 MHz) RF System Layout

4.5 Cells of 8 klystrons for Medium Beta 10,5 Cells of 8 klystrons (IOTs) for High Beta

Elliptical (704 MHz) RF System Layout (but two weeks ago it may have changed)

Racks moved to allow the cables to follow the route of the waveguide

704 MHz Klystron (Thales) factory tests

curve 1 TH2182 001 power transfer curve @ 50 Hz 1.7 ms

An RF Source for a Proton Linac

An IOT for ESS

Parameter		Comment
Frequency Maximum Power	$\mathbf{1 0 4 . 4 2 \mathrm { MHz }}$	Bandwidth >+/-0.5 MHz
RF Pulse length	Up to 3.5 ms	Beam pulse 2.86 ms
Duty factor	Up to 5%	Pulse rep. frequency fixed to 14 Hz
Efficiency	Target $>65 \%$	
High Voltage	Low	Expected < 50 kV
Design Lifetime	$>50,000 \mathrm{hrs}$	

Work is being carried out in collaboration with CERN
$>\quad$ ESS to procure prototypes
$>\quad$ CERN to make space and utilities available for testing Target: Approval for ESS series production in 2017/18

1.2 MW Multi-Beam IOT

* ESS launched tender for IOT prototypes

* Tender replies received and contracts about to be signed for two IOTs
* Delivery in 24 months
* Site acceptance at CERN followed by long term soak test
* ESS > 3 MW saved from from high beta linac $=20 \mathrm{GWh}$ per year

Pre-tender
CPI Cartoon

[^0]
Summary of Key Parameters for the ESS High Power Devices

	Klystron 352 MHz	Tetrode* 352 MHz	Klystron 704 MHz	IOT 704 MHz
Peak output power (MW)	2.8	400	1.5	1.2
Frequency (MHz)	352.21	352.21	704.42	704.42
Gun	Diode gun	Filament	Diode gun	Gridded Gun
Pulse length (ms)	4	3.5	4	3.5
Rep. rate (Hz)	Up to 14	Up to 14	Up to 14	Up to 14
Maximum Beam Voltage (kV)	115	18	115	50
Efficiency at nominal output power	$\geq 55 \%$	$>65 \%$	$>60 \%$	$>65 \%$
-1 dB Bandwidth (MHz)	$\geq+/-1$	$\geq+/-3$	$\geq+/-1$	$\geq+/-1$
Gain (dB)	≥ 40	>15	≥ 40	≥ 20

[^0]: Electron Devices

