

EUROPEAN SPALLATION SOURCE

Brief update on the ESS RF Systems

Morten Jensen

www.europeanspallationsource.se ESLS RF, Dortmund, 17 September 2014

Linac Design Choices

EUROPEAN SPALLATION SOURCE

- User facilities demand high availability (>95%)
- The linac will be mostly (>97%) superconducting
- Front end frequency is **352 MHz** (CERN Standard)
- High energy section is at **704 MHz**
- ESS will limit the peak beam current below 62.5 mA (was 50 mA)
- Linac Energy of 2 GeV **125 MW** peak power.

The ESS Superconducting Power Profile > 150 cavities/couplers

EUROPEAN SPALLATION SOURCE

Total High Power RF: 133 MW peak (4% duty) plus overhead

RF distribution for the RFQ and 5 DTLs Layout being finalised

EUROPEAN SPALLATION SOURCE

Possible RFQ and DTL Power Source

Elliptical (704 MHz) RF System Layout

EUROPEAN SPALLATION SOURCE

4.5 Cells of 8 klystrons for Medium Beta 10,5 Cells of 8 klystrons (IOTs) for High Beta Elliptical (704 MHz) RF System Layout

(but two weeks ago it <u>may</u> have changed)

EUROPEAN SPALLATION SOURCE

Racks moved to allow the cables to follow the route of the waveguide

704 MHz Klystron (Thales) factory tests

EUROPEAN SPALLATION

An RF Source for a Proton Linac

An IOT for ESS

Comment **Parameter** Bandwidth > +/- 0.5 MHz Frequency 704.42 MHz Average power during the pulse Maximum **1.2 MW** Power **RF** Pulse length Up to 3.5 ms Beam pulse 2.86 ms Pulse rep. frequency fixed to 14 Hz Duty factor Up to 5% Efficiency Target > 65%Expected < 50 kV**High Voltage** Low > 50,000 hrs Design Lifetime

Work is being carried out in collaboration with CERN

- ESS to procure prototypes
- CERN to make space and utilities available for testing

Target: Approval for ESS series production in 2017/18

1.2 MW Multi-Beam IOT

- ESS launched tender for IOT prototypes
- Tender replies received and contracts about to be signed for two IOTs
- Delivery in 24 months
- Site acceptance at CERN followed by long term soak test

 ESS > 3 MW saved from from high beta linac = 20 GWh per year

EUROPEAN SPALLATION SOURCE

Pre-tender CPI Cartoon

Electron Devices

Summary of Key Parameters for the ESS High Power Devices

EUROPEAN SPALLATION SOURCE

	Klystron 352 MHz	Tetrode* 352 MHz	Klystron 704 MHz	IOT 704 MHz
Peak output power (MW)	2.8	400	1.5	1.2
Frequency (MHz)	352.21	352.21	704.42	704.42
Gun	Diode gun	Filament	Diode gun	Gridded Gun
Pulse length (ms)	4	3.5	4	3.5
Rep. rate (Hz)	Up to 14	Up to 14	Up to 14	Up to 14
Maximum Beam Voltage (kV)	115	18	115	50
Efficiency at nominal output power	≥ 55%	> 65%	> 60%	> 65%
- 1dB Bandwidth (MHz)	≥+/- 1	≥+/- 3	≥+/- 1	≥+/-1
Gain (dB)	\geq 40	>15	\geq 40	≥ 20